Preparation and Catalytic Property of MoO_x with Meso-porosity

Xin Ping WANG*, Ying Jun WANG, Song Hai CHAI, Tian Xi CAI

State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012

Abstract: A partially reduced molybdenum oxide (MOO_x) with meso-porosity was prepared for the first time and its catalytic performance in *n*-heptane isomerization carried out in a fixed bed flow reactor has been studied. And the evolvement of MOO_x formation has been characterized by X-ray diffraction and catalytic performance in *n*-heptane isomerization. The MOO_x catalyst obtained from H₂ reduction for 12 h, possessing a maximum pore volume at diameter *ca*. 4.1 nm, exhibited high activity in *n*-heptane isomerization. The composition of this catalyst is of the predominant MOO_x phases, MOO_2 phase and trace amount of metal Mo phase.

Keywords: Meso-porosity, MoO_x, *n*-heptane isomerization.

Recently, molybdenum oxides (MoO_x) treated in H₂ at 623~673 K has attracted much attention because of the high catalytic activity and selectivity for *n*-heptane isomerization¹⁻⁴ and its microporosity structure⁵⁻⁷. Matsuda *et al* have reported that the MoO_x obtained from H₂ reduction was more active and selective for isomerization of *n*-heptane compared with 0.5 wt% Pt/USY zeolite¹. They suggested that the MoO_x possesses a bifunctional property, which is responsible for the high isomerization activity. Furthermore, it is revealed that the active phase and its catalytic performance strongly depend on the reduction conditions, especially the reduction period^{1,4}. On the other hand, T. Matsuda *et al.* have studied the porous structure of MoO_x obtained by H₂ reduction at the temperature ranging from 573 K to 673 K⁵. And they have found that the MoO_x produced at the temperature lower than 623 K has the characteristic of microporosity with maximum volume around 0.8 nm in diameter⁵⁻⁷, and that reduction of MoO₃ at 673 K almost cannot produce pores. In this paper, we report a MoO_x with meso-porosity characteristics obtained by H₂ reduction of MoO₃, which is more active for *n*-heptane isomerization.

Experimental

In this study MoO_3 (Beijing Chemicals) powder with analytical purity was used as the precursor of the MoO_x catalyst. The MoO_3 was made into pellets, crushed, and then sieved (60-80 mesh) for charging into a stainless steel reactor with the diameter of 3.8 mm. The MoO_x catalyst was obtained by reducing the precursor in H₂ with a flow rate of 120

^{*}Email: dllgwxp@dlut.edu.cn

Xin Ping WANG et al.

mL/min. A prescribed amount (0.15 g) of the MoO₃ was packed at the central position of the reactor, and then was reduced at 623 K for the designated time in H_2 which was purified by passing through Pd/Al₂O₃ catalyst and then dried with molecular sieve on line. After being cooled to reaction temperature in H₂, the sample was purged by pure N₂ for 30 min, cooled to room temperature in pure N_2 , and then passivated for 3 h with 0.5 % O_2 in N₂ to avoid a bulk oxidation. The samples thus obtained were designated as MoO₃(2), $MoO_3(6)$, etc., where the values in parentheses represent the period of H₂ reduction. Crystalline phase of the catalysts was characterized in Riguka D/max 2400 X-ray diffractometer using Cu-K $_{\alpha}$ radiation under 40 KV and 100 mA. BET surface area and pore size distribution of the catalysts were determined at liquid nitrogen temperature by a micrometritics ASAP-2000 adsorption analyzer. The isomerization of n-heptane was isothermally carried out at 573 K under atmospheric pressure in a conventional fixed-bed flow reactor, in which the catalyst was used *in situ* without passivation. The composition of effluent gas was analyzed by means of FID gas chromatography using quartz capillary separation column. The selectivity to *iso*-C₇ was defined as the ratio in terms of moles of *iso*- C_7 products to *n*- C_7 transformed.

Results and Discussion

Figure 1 XRD patterns of MoO_x obtained by H₂ reduction at 623 K for various time

(A) 2 h (B) 6 h and (C) 12 h (, and corresponding to MoO₃, MoO₂, (B) and metal Mo phase, respectively)

As shown in **Figure 1**, almost all of the MoO₃ phase in the MoO₃(2) sample was converted to other phases, though the diffraction lines(2θ =12.7°, 25.4° and 38.5°) corresponding to MoO₃ phase were still obvious. By comparing the diffraction pattern of MoO₃(2) with those of a series of MoO₃-MoO₂ mixtures composed of different MoO₃ content, less than 1/30 of the MoO₃ in the sample MoO₃(2) in weight could be determined. When reduction period increased to 6 h, the MoO₃ phase was completely disappeared and the MoO₃(6) sample consisted of MoO₂ as well as some MoO_x phases, which are unascertained thoroughly in their composition and structure of crystalline phase, corresponding to the diffraction lines at 2θ =14.4°, 29.3°, 38.3°, and 44.4°. The results indicate that MoO₃ are easily reduced in the early stage. When the reduction period was prolonged to 12 h, a

Preparation and Catalytic Property of MoOx with Meso-porosity 613

weak peak $(2\theta=40.8^{\circ})^{8}$ assigned to metal state of Mo was observed, accompanied by the essential disappearance of the diffraction lines at $2\theta=14.4^{\circ}$ and 29.3° . Thus it can be considered that the catalyst of MoO₃(12) is composed of the predominant MoO_x phases, MoO₂ phase and trace amount of metal Mo phase.

Figure 2 Pore-size distribution curves based on N₂ desorption data

BET equation provided BET surface area of $36.2 \text{ m}^2/\text{g}$ for MoO₃(6) and $41.6 \text{ m}^2/\text{g}$ for MoO₃(12). The corresponding pore-size distribution curve of MoO₃(12) sample showed a maximum pore volume at the diameter of 4.1 nm, as shown in **Figure 2**. This result is quite different from that reported in the literatures, in which T. Matsuda *et al* obtained the maximum pore volume at the diameter of *ca*. 0.8 nm, and no maximum pore diameter could be observed in the mesoporous region⁵⁻⁷. In our experiments, the MoO₃(6) showed also the maximum pore volume at the diameter of 4.1 nm, indicating that the mesopore formation begins at the early stage of the MoO₃ reduction.

Figure 3 Variation of catalytic property of MoO3 treated with different H2 reduction period

(: selectivity for i-C₇; : n-C₇ conversion)

Xin Ping WANG et al.

The bifunctional catalytic activity of MoO_x catalysts was characterized by *n*-heptane isomerization reaction that was carried out at 573 K under atmospheric pressure. Typical results taken after 4 h of run are shown in **Figure 3**. The parent MoO_3 was almost inactive for both isomerization and cracking of heptane. And on the MoO_x catalyst, the conversion of *n*-heptane greatly increased with the reduction period when the reduction time was less than 6 h. The activity of the MoO_x catalyst could be further enhanced by prolonging the reduction period for more than 6 hours, but it reached a constant after 12 h. At the conditions of 573 K, 11.0 g-cat·h·mol- C_7^{-1} of *W/F* and 23 of H₂/*n*-heptane in volume, the conversion of *n*-heptane reached 51% on the $MoO_3(12)$ catalyst, which is more active compared with that reported in the literature¹, especially at the lower H₂/*n*-heptane ratio conditions. Here we suppose that the mesopores may be more important than the micropores for *n*-heptane isomerization reaction, for the mesoporous MoO_x with a surface area of 41.6 m²/g exhibits a higher activity than that of microporous MoO_x with a surface area of 170-180 m²/g¹⁻⁴.

Moreover, it is interesting to compare the maximum pore volume of the $MoO_3(12)$ sample prepared by H₂ reduction to that of Mo₂N synthesized by NH₃ reduction, on which the maximum pore volume at the diameter ranging from 3 to 5 nm was determined,⁹ indicating that the meso-porosity of Mo₂N is also created at the early stage of MoO₃ reduction other than exclusively formed at the nitriding step, though it is another kind of material.

References

- 1. T. Matsuda, H. Shiro, H. Sakagami, N. Takahashi, Catal. Lett., 1997, 47, 99.
- 2. T. Matsuda, H. Sakagami, N. Takahashi, J. Chem. Soc., Faraday Trans., 1997, 93, 2225.
- 3. T. Matsuda, F. Uchijima, S. Endo, N. Takahashi, Appl. Catal. A: General, 1999, 176, 91.
- 4. T. Matsuda, Y. Hirata, H. Sakagami, N. Takahashi, Appl. Catal. A: General, 2000, 193, 185.
- 5. T. Matsuda, Y. Hirata, H. Itoh, H. Sakagami, N. Takahashi, *Micropor. Mesopor. Mater.*, **2001**, *42*, 337.
- 6. T. Matsuda, H. Sakagami, N. Takahashi, Appl. Catal. A: General, 2001, 213, 83.
- 7. T. Matsuda, A. Hanai, F. Uchijima, et al., Micropor. Mesopor. Mater., 2002, 51, 155.
- 8. F. Uchijima, T. takagi, H. Itoh, et al., Phys. Chem. Chem. Phys., 2000, 2, 1077.
- 9. Y.J. Zhang, Z.B. Wei, W.H. Yan, P.L. Ying, Catal. Today, 1996, 30, 135.

Received 21 April, 2003